Myslete na dataře už při tvorbě databáze | Mňamka #243
Pořád dokola potkáváme čtyři zádrhely, které se objevují v databázích u klientů. Velmi často tyhle “patterny” vedou k velkým problémům, frustraci a ve finále prodražují celý projekt. Pojďme si je projít.
1. Ta data jsme smazali
Možná Vám to přijde úsměvný, mně je ale spíš do breku.
“prosímvás a ty historický data, máte to někde” … “nemáme, smazali jsme je” …
Proč? Protože objem. Ano je to tak, ještě dnes se setkáváme s tím, že někdo třeba stará data zagreguje a smaže zdroj. Takže když chcete zpětně něco projít nebo dopočítat, máte smůlu. Dneska, kdy existuje 1000 a jedna služba na zálohování dat, a cloud úložiště stojí jednotky dolarů měsíčně… nedělejte to!
2. K čemu historizovat?
Představte si, že měníte nějakou nabídku, položky v ceníku. Nění špatný si je do databáze uložit k danému dni, nebo držet historii změn. Je totiž možné, že se dostanete do situace, kdy na tyhle položky jsou navázané nějaké další položky a dost se do věcí zamotáte. V lepším případě to nějak rozmotáte, ale historii, pokud prostě k “danému idčku” přepíšete hodnotu, tu už nikdy nedohledáte...
3. Total_price
Konečně. Moje nejoblíbenější eshopařská libůstka.
Dostávám odpověď na otázku “jak spočítám obrat?”. Chytám se za hlavu. Zase. Je to tam. Ten sloupec v databázi, o kterém většinou eshopaři tvrdí, že “je v něm všechno”, ve skutečnosti s ním neuděláte nic. Jmenuje se většinou total_price nebo nějak podobně. A co že je to za sloupec? No v něm je přece všechno! Je tam obrat. Jednoduchý jako facka.
Jenže ve skutečnosti vůbec. To, že někdo obří “ify-věží” v kódu spočítal správně obrat taky mimo jiné znamená, že vůbec nevíte, jak naložil se slevama, dopravou, vratkama, dph … což je většinou to, co chcete, když analyzujete data. Chcete jednoduše filtrovat, porovnávat, započítat nebo nezapočítat.
Vývojáři to tak určitě mysleli dobře, chtěli ušetřit práci, ale ve finále je to naopak. Samozřejmě, ruku na srdce, zdokumentovali to? … Když ne, nezbyde Vám nic jinýho, než luštit “ify-věž”.
4. Slevy kam se podíváš
Posledním tipem, jak pomoc analytikům v práci, je správně pracovat se slevama. Prosím, dávejte ceny jako položky na fakturu se záporným znaménkem. Usnadníte nám práci. Dost často si totiž jednu slevu uložíte na fakturu, další na položku, další někam jinam a ve finále máte nějaké ty slevové kódy v jiné tabulce a s těmi se samozřejmě taky počítá… obloukem se tak vracíme k magickému total_price sloupečku…
Myslete na nás! :)
What is a Use Case in Data Projects?
A use case in a data-driven project defines the practical application of data—who will use it, why, and what decisions it will support. It’s tied to a specific role within the company and helps that role achieve its KPIs or business objectives.
Excel or Not to Excel?
Excel can be a great tool for quick analyses, but it’s long been unsuitable for managing medium and large businesses. If you’ve ever tried opening a massive file with thousands of records, you know exactly what we mean. But it’s not just about wasted time—“Excel-ing” in a large company can cost you a fortune. How much? Find out in today’s Mňamka, where Patrik breaks down the biggest pain points of handling data in Excel! 🚀
Základní pojmy v datovém modelování | Mňamka #457
Co je to datový model? Jaký je rozdíl mezi konceptuálním a logickým modelem? A k čemu slouží proces tzv. normalizace? Bez datového modelování se dnes v BI obejdete už jen stěží, Kuba si o něm proto připravil krátkou minisérii, ve které si vše probereme od úplných základů. V prvním díle se seznámíme s nejdůležitějšími pojmy, které byste v této souvislosti měli znát, a na jednoduchém příkladu z oblasti sales si ukážeme, jak takový datový model vlastně vypadá. Tak pojďme na to!