Myslete na dataře už při tvorbě databáze | Mňamka #243

Pořád dokola potkáváme čtyři zádrhely, které se objevují v databázích u klientů. Velmi často tyhle “patterny” vedou k velkým problémům, frustraci a ve finále prodražují celý projekt. Pojďme si je projít.

1. Ta data jsme smazali

Možná Vám to přijde úsměvný, mně je ale spíš do breku. 

“prosímvás a ty historický data, máte to někde”“nemáme, smazali jsme je” …

Proč? Protože objem. Ano je to tak, ještě dnes se setkáváme s tím, že někdo třeba stará data zagreguje a smaže zdroj. Takže když chcete zpětně něco projít nebo dopočítat, máte smůlu. Dneska, kdy existuje 1000 a jedna služba na zálohování dat, a cloud úložiště stojí jednotky dolarů měsíčně… nedělejte to! 

 

2. K čemu historizovat?

Představte si, že měníte nějakou nabídku, položky v ceníku. Nění špatný si je do databáze uložit k danému dni, nebo držet historii změn. Je totiž možné, že se dostanete do situace, kdy na tyhle položky jsou navázané nějaké další položky a dost se do věcí zamotáte. V lepším případě to nějak rozmotáte, ale historii, pokud prostě k “danému idčku” přepíšete hodnotu, tu už nikdy nedohledáte...  
 

3. Total_price

Konečně. Moje nejoblíbenější eshopařská libůstka.

Dostávám odpověď na otázku “jak spočítám obrat?”. Chytám se za hlavu. Zase. Je to tam. Ten sloupec v databázi, o kterém většinou eshopaři tvrdí, že “je v něm všechno”, ve skutečnosti s ním neuděláte nic. Jmenuje se většinou total_price nebo nějak podobně. A co že je to za sloupec? No v něm je přece všechno! Je tam obrat. Jednoduchý jako facka. 

Jenže ve skutečnosti vůbec. To, že někdo obří “ify-věží” v kódu spočítal správně obrat taky mimo jiné znamená, že vůbec nevíte, jak naložil se slevama, dopravou, vratkama, dph … což je většinou to, co chcete, když analyzujete data. Chcete jednoduše filtrovat, porovnávat, započítat nebo nezapočítat. 

Vývojáři to tak určitě mysleli dobře, chtěli ušetřit práci, ale ve finále je to naopak. Samozřejmě, ruku na srdce, zdokumentovali to? … Když ne, nezbyde Vám nic jinýho, než luštit “ify-věž”. 

 

4. Slevy kam se podíváš

Posledním tipem, jak pomoc analytikům v práci, je správně pracovat se slevama. Prosím, dávejte ceny jako položky na fakturu se záporným znaménkem. Usnadníte nám práci. Dost často si totiž jednu slevu uložíte na fakturu, další na položku, další někam jinam a ve finále máte nějaké ty slevové kódy v jiné tabulce a s těmi se samozřejmě taky počítá… obloukem se tak vracíme k magickému total_price sloupečku… 

Myslete na nás! :)

Máte k článku nějaké otázky nebo připomínky? Klidně mi napište, rád to s Vámi proberu :-)

Jirka Tobolka
datový detektiv
LinkedIn

Pilíře úspěšného datového projektu | Mňamka #544

Pilíře úspěšného datového projektu | Mňamka #544

V Bizztreatu máme za sebou desítky datových projektů napříč různými odvětvími např. jako e-commerce, retail, výroba, média nebo obchod. Z praxe víme, že mnoho datových projektů selhává – nedoručí očekávaný přínos, uvíznou na půli cesty nebo se zacyklí v nekonečném „ještě to ladíme“. Bez ohledu na typ projektu či sektor platí, že úspěch vždy stojí na pevných základech – pilířích, které rozhodují o tom, jestli výstup skutečně přinese byznysovou hodnotu. Právě proto je klíčové zaměřit se na to, co dělá datový projekt opravdu úspěšným. Tak pojďme na to.

Ikony v reportu: Zaujměte na první pohled a zjednodušte navigaci | Mňamka #543

Ikony v reportu: Zaujměte na první pohled a zjednodušte navigaci | Mňamka #543

Vizuální zkratky, které promění datovou džungli v přehlednou mapu. Zjistěte, jak s pomocí ikon zjednodušit navigaci, zvýraznit klíčové informace a proměnit suchá data v poutavý příběh. Naučte se vybírat vhodné ikony, pracovat s nimi efektivně a odhalte, proč je jejich správné použití klíčové pro srozumitelnost a úspěch vašich reportů.

Jak předvídat chování zákazníků: Churn, životní hodnota a další klíčové ukazatele | Mňamka #542

Jak předvídat chování zákazníků: Churn, životní hodnota a další klíčové ukazatele | Mňamka #542

Porozumění chování zákazníků a jeho predikce jsou dnes klíčové pro firmy, které chtějí budovat loajalitu, zlepšit cílení kampaní a efektivně řídit své marketingové investice. Jak předpovědět, kdy zákazník odejde, jakou má pro firmu hodnotu nebo kdy s největší pravděpodobností znovu nakoupí? V článku se podíváme na klíčové koncepty, jako je predikce odchodu zákazníků (churn), výpočet jejich životní hodnoty (Lifetime Value), odhad pravděpodobnosti další interakce či modelování sklonu k nákupu. Získané poznatky mohou pomoci vytvářet efektivnější marketingové strategie a lepší zákaznickou zkušenost.