Myslete na dataře už při tvorbě databáze | Mňamka #243

Pořád dokola potkáváme čtyři zádrhely, které se objevují v databázích u klientů. Velmi často tyhle “patterny” vedou k velkým problémům, frustraci a ve finále prodražují celý projekt. Pojďme si je projít.

1. Ta data jsme smazali

Možná Vám to přijde úsměvný, mně je ale spíš do breku. 

“prosímvás a ty historický data, máte to někde”“nemáme, smazali jsme je” …

Proč? Protože objem. Ano je to tak, ještě dnes se setkáváme s tím, že někdo třeba stará data zagreguje a smaže zdroj. Takže když chcete zpětně něco projít nebo dopočítat, máte smůlu. Dneska, kdy existuje 1000 a jedna služba na zálohování dat, a cloud úložiště stojí jednotky dolarů měsíčně… nedělejte to! 

 

2. K čemu historizovat?

Představte si, že měníte nějakou nabídku, položky v ceníku. Nění špatný si je do databáze uložit k danému dni, nebo držet historii změn. Je totiž možné, že se dostanete do situace, kdy na tyhle položky jsou navázané nějaké další položky a dost se do věcí zamotáte. V lepším případě to nějak rozmotáte, ale historii, pokud prostě k “danému idčku” přepíšete hodnotu, tu už nikdy nedohledáte...  
 

3. Total_price

Konečně. Moje nejoblíbenější eshopařská libůstka.

Dostávám odpověď na otázku “jak spočítám obrat?”. Chytám se za hlavu. Zase. Je to tam. Ten sloupec v databázi, o kterém většinou eshopaři tvrdí, že “je v něm všechno”, ve skutečnosti s ním neuděláte nic. Jmenuje se většinou total_price nebo nějak podobně. A co že je to za sloupec? No v něm je přece všechno! Je tam obrat. Jednoduchý jako facka. 

Jenže ve skutečnosti vůbec. To, že někdo obří “ify-věží” v kódu spočítal správně obrat taky mimo jiné znamená, že vůbec nevíte, jak naložil se slevama, dopravou, vratkama, dph … což je většinou to, co chcete, když analyzujete data. Chcete jednoduše filtrovat, porovnávat, započítat nebo nezapočítat. 

Vývojáři to tak určitě mysleli dobře, chtěli ušetřit práci, ale ve finále je to naopak. Samozřejmě, ruku na srdce, zdokumentovali to? … Když ne, nezbyde Vám nic jinýho, než luštit “ify-věž”. 

 

4. Slevy kam se podíváš

Posledním tipem, jak pomoc analytikům v práci, je správně pracovat se slevama. Prosím, dávejte ceny jako položky na fakturu se záporným znaménkem. Usnadníte nám práci. Dost často si totiž jednu slevu uložíte na fakturu, další na položku, další někam jinam a ve finále máte nějaké ty slevové kódy v jiné tabulce a s těmi se samozřejmě taky počítá… obloukem se tak vracíme k magickému total_price sloupečku… 

Myslete na nás! :)

Máte k článku nějaké otázky nebo připomínky? Klidně mi napište, rád to s Vámi proberu :-)

Jirka Tobolka
datový detektiv
LinkedIn

GoodData Cloud aneb mladší sestřička GoodData Platformy | Mňamka #537

GoodData Cloud aneb mladší sestřička GoodData Platformy | Mňamka #537

GoodData Platform už pravděpodobně znáte, ale pokud ne, můžete to vždycky dohnat v našich již existujících článcích. Třeba tady(odkaz) nebo tady(odkaz). Dnes bych vám ráda představila produkt, který není na trhu tak dlouho, ale určitě stojí za to o něm vědět víc. To, že je GoodData Cloud mladší sestřičkou naší staré dobré GoodData Platformy, není žádným tajemstvím, ale jak se jí daří vyrovnat se svojí starší sestře? Co nového vám může nová verze nabídnout? Co mají tyhle dvě společné a v čem si jsou naopak cizí? Tohle vám zkusím v dnešní BizztroMňamce přiblížit.

Proč (ne)integrovat ERP přímo s Power BI a zapojit datový sklad?| Mňamka #536

Proč (ne)integrovat ERP přímo s Power BI a zapojit datový sklad?| Mňamka #536

Napojení ERP přímo na Power BI je často prvním krokem, kterým firmy začínají svou datovou cestu – rychlé, levné a snadno dosažitelné řešení. Z dlouhodobého hlediska však toto přímé propojení přináší řadu limitů, které mohou bránit rozvoji datové analytiky a snižovat přidanou hodnotu pro byznys. V tomto článku se dozvíte, proč je důležité uvažovat o koncepčním řešení v podobě datového skladu, jaký přínos může mít centralizace dat a kdy je správný čas posunout se k robustnější datové infrastruktuře.

Klíčové ukazatele výkonnosti (KPI): Jak je správně nastavit a efektivně vyhodnotit pomocí business intelligence | Mňamka #534

Klíčové ukazatele výkonnosti (KPI): Jak je správně nastavit a efektivně vyhodnotit pomocí business intelligence | Mňamka #534

Jak efektivně řídit růst a sledovat dosažení cílů? Jak klíčové ukazatele výkonnosti (KPI) pomáhají firmám zlepšovat výkon a naplňovat strategické záměry?V článku najdete příklady KPI pro oblasti jako finance, marketing, zákaznický servis, výroba, lidské zdroje a IT, včetně praktických příkladů jejich využití. Zjistěte, jak zavést a sledovat KPI, abyste získali lepší přehled o efektivitě klíčových procesů.