MAQL I. - MAQL vs SQL | Mňamka #427

Pro ty, kteří se pohybují v datovém světě, jsou dotazovací jazyky denním chlebem. Jak se říkává, kolik jazyků umíš, tolikrát jsi člověkem. Platí i „kolik dotazovacích jazyků umíš, tolikrát jsi datovým analytikem?“ Ať už v budoucnu budou podobná přísloví vznikat nebo nikoli, není na škodu si rozšířit obzory o jeden další dotazovací jazyk, kterým je dozajista i MAQL. Pro MAQL jsem si připravila takovou minisérii Mňamek, kde si ukážeme, co všechno se MAQLem dá dělat a k čemu vám může být užitečný.

Co to je MAQL?

Jak už bylo řečeno, MAQL aneb Multi-Dimension Analytical Query Language je dotazovací jazyk, se kterým se setkáte při práci v GoodDatě. Tento dotazovací jazyk pracuje s fakty a dimenzemi z datového modelu vašeho workspacu a nabízí vám jedinečnou šanci si nad vašimi daty postavit metriky. Těmito metrikami můžete data filtrovat, agregovat a provádět nad nimi i všechny základní matematické operace a zároveň MAQL nabízí i předdefinované statistických operace. „To je všechno hezké,“ říkáte si, „ale jakou to má výhodu oproti tomu, když si tyhle operace nadefinuji v SQL?“

MAQL vs SQL

Pokud jste zarytými fanoušky SQL, jako osvědčené klasiky, tak nebojte, on MAQL z SQL samozřejmě vychází. Přináší ale výhody v jednoduchosti a uživatelské přívětivosti. Pokud byste totiž stejné operace prováděli v SQL, museli byste si pečlivě hlídat, kterou tabulku můžete najoinovat kam a provádět i několik joinů, abyste pospojovali data, která spolu souvisí. MAQL tohle udělá za vás, pracuje totiž s předem nadefinovaným logickým datovým modelem vašeho workspacu a vy si díky tomu můžete spoustu příkazů odpustit. Rozloučit se můžete například s částmi jako je FROM, JOIN či ON, co ale zůstává je SELECT, protože ani na ten se v MAQLu nedá dopustit.

Zde jsou vytvořené příklady, kde je vidět, kolik práce vám MAQL ušetří.

Výhody MAQL:

  • časová úspora
  • zjednodušení query
  • přehlednost
  • pracuje automaticky s modelem
  • vytvořené metriky můžete přepoužít i v dalších metrikách

Nevýhody MAQL:

  • datový model si musíte nejprve nadefinovat
  • nenabízí tolik funkcí jako SQL
  • pouze v GoodData

Ať už vás MAQL zaujal či ne, jsem ráda, že jste si článek dočetli až sem a jestli vás cokoliv dalšího napadá nebo zajímá ohledně MAQL, dejte mi vědět!

Mějte se krásně a nebojte se dotazovat v žádném dotazovacích jazyce.

Máte k článku nějaké otázky nebo připomínky? Klidně nám napište, rádi to s Vámi probereme :-)

Petra Nedvědová
datový detektiv
LinkedIn

What is a Use Case in Data Projects?

What is a Use Case in Data Projects?

A use case in a data-driven project defines the practical application of data—who will use it, why, and what decisions it will support. It’s tied to a specific role within the company and helps that role achieve its KPIs or business objectives.

Excel or Not to Excel?

Excel or Not to Excel?

Excel can be a great tool for quick analyses, but it’s long been unsuitable for managing medium and large businesses. If you’ve ever tried opening a massive file with thousands of records, you know exactly what we mean. But it’s not just about wasted time—“Excel-ing” in a large company can cost you a fortune. How much? Find out in today’s Mňamka, where Patrik breaks down the biggest pain points of handling data in Excel! 🚀

Základní pojmy v datovém modelování | Mňamka #457

Základní pojmy v datovém modelování | Mňamka #457

Co je to datový model? Jaký je rozdíl mezi konceptuálním a logickým modelem? A k čemu slouží proces tzv. normalizace? Bez datového modelování se dnes v BI obejdete už jen stěží, Kuba si o něm proto připravil krátkou minisérii, ve které si vše probereme od úplných základů. V prvním díle se seznámíme s nejdůležitějšími pojmy, které byste v této souvislosti měli znát, a na jednoduchém příkladu z oblasti sales si ukážeme, jak takový datový model vlastně vypadá. Tak pojďme na to!