MAQL I. - MAQL vs SQL | Mňamka #427
Pro ty, kteří se pohybují v datovém světě, jsou dotazovací jazyky denním chlebem. Jak se říkává, kolik jazyků umíš, tolikrát jsi člověkem. Platí i „kolik dotazovacích jazyků umíš, tolikrát jsi datovým analytikem?“ Ať už v budoucnu budou podobná přísloví vznikat nebo nikoli, není na škodu si rozšířit obzory o jeden další dotazovací jazyk, kterým je dozajista i MAQL. Pro MAQL jsem si připravila takovou minisérii Mňamek, kde si ukážeme, co všechno se MAQLem dá dělat a k čemu vám může být užitečný.
Co to je MAQL?
Jak už bylo řečeno, MAQL aneb Multi-Dimension Analytical Query Language je dotazovací jazyk, se kterým se setkáte při práci v GoodDatě. Tento dotazovací jazyk pracuje s fakty a dimenzemi z datového modelu vašeho workspacu a nabízí vám jedinečnou šanci si nad vašimi daty postavit metriky. Těmito metrikami můžete data filtrovat, agregovat a provádět nad nimi i všechny základní matematické operace a zároveň MAQL nabízí i předdefinované statistických operace. „To je všechno hezké,“ říkáte si, „ale jakou to má výhodu oproti tomu, když si tyhle operace nadefinuji v SQL?“
MAQL vs SQL
Pokud jste zarytými fanoušky SQL, jako osvědčené klasiky, tak nebojte, on MAQL z SQL samozřejmě vychází. Přináší ale výhody v jednoduchosti a uživatelské přívětivosti. Pokud byste totiž stejné operace prováděli v SQL, museli byste si pečlivě hlídat, kterou tabulku můžete najoinovat kam a provádět i několik joinů, abyste pospojovali data, která spolu souvisí. MAQL tohle udělá za vás, pracuje totiž s předem nadefinovaným logickým datovým modelem vašeho workspacu a vy si díky tomu můžete spoustu příkazů odpustit. Rozloučit se můžete například s částmi jako je FROM, JOIN či ON, co ale zůstává je SELECT, protože ani na ten se v MAQLu nedá dopustit.
Zde jsou vytvořené příklady, kde je vidět, kolik práce vám MAQL ušetří.

Výhody MAQL:
- časová úspora
- zjednodušení query
- přehlednost
- pracuje automaticky s modelem
- vytvořené metriky můžete přepoužít i v dalších metrikách
Nevýhody MAQL:
- datový model si musíte nejprve nadefinovat
- nenabízí tolik funkcí jako SQL
- pouze v GoodData
Ať už vás MAQL zaujal či ne, jsem ráda, že jste si článek dočetli až sem a jestli vás cokoliv dalšího napadá nebo zajímá ohledně MAQL, dejte mi vědět!
Mějte se krásně a nebojte se dotazovat v žádném dotazovacích jazyce.
Použité zdroje:
Pandas – k čemu slouží, k čemu jej raději nepoužijeme a jeho alternativy | Mňamka #435
Pandas je jednou z nejpoužívanějších knihoven pro zpracování dat v jazyce Python. Jeho největší předností je zejména jednoduchá a intuitivní syntaxe a také rychlost, se kterou můžete zpracovávat velké datové soubory. V BizzTreatu ho proto často využíváme např. pro ad hoc analýzy dat, kdy potřebujeme rychle prozkoumat, jak data vlastně vypadají a jaká je jejich kvalita. V dnešní mňamce od Báry si ukážeme, kde všude lze Pandas použít a jak si stojí v porovnání s ostatními knihovnami!
Keboola transformace – v hlavní roli proměnné | Mňamka #432
Co dělat, když se váš projekt liší jen v několika důležitých parametrech? No mohli byste samozřejmě všechno hardkódovat, to je ale značně pracné. V BizzTreatu proto raději dáváme přednost hojnému využívání proměnných. Jednak se s nimi lépe pracuje a zároveň nám usnadňují následnou správu kódu. V Keboola transformacích přitom máme hned dva typy proměnných – ty keboolácké a ty snowflakové. V dnešní mňamce od Kristýny si ukážeme, jaký je mezi nimi rozdíl a kdy a jak je používat!
Terraform – Nejlepší přítel infrastruktury | Mňamka #424
Terraform. Tento superhrdina správy infrastruktury je skvělý pomocník, bez kterého bychom se v BizzTreatu už jen stěží obešli. S jeho pomocí totiž můžete konzistentním a automatizovaným způsobem definovat jednotlivé součásti vaší infrastruktury a zcela se tak vyhnout chaosu ručních aktualizací a škálovacích bitev. V dnešní mňamce od Michala si na zjednodušeném příkladu vytvoření nového virtuálního počítače v cloudu ukážeme, jak Terraform v praxi vlastně funguje!