Základní datové typy | Mňamka #41

Datový typ je jednoduše atributem dat, který říká kompilátoru nebo interpretovi, jak programátor hodlá data použít. Většina programovacích jazyků podporuje běžné datové typy reálných , celých a booleovských . Datový typ omezuje hodnoty, které může mít výraz , například proměnná nebo funkce. Tento datový typ definuje operace, které lze s daty provádět, význam dat a způsob, jakým lze uložit hodnoty tohoto typu. Typ hodnoty, ze které může výraz vzít svou hodnotu. (zdroj wiki) 

Uf. Toť definice. Co to ale ve skutečnosti znamená? Vědět, o jaký datový typ se jedná je úplný základ datové analytiky. Správná klasifikace nám ulehčí spoustu budoucích troubles. Když jsem začínala s datovou analytikou, o datových typech jsem samozřejmě slyšela, ale moc mi to hned nedocvaklo :-) Postřehla jsem to až ve chvíli, kdy jsem se učila s vizualizačním nástrojem - pokud totiž neoznačíte správně datový typ hned na startu, bude vám i to nejlepší zobrazovátko ukazovat nesmysly. Například máte-li sloupec “rok” označený jako “text - string” - pokud nezměníte datový typ na “datum - date”, nikdy nebudete schopni zobrazit data (rok) v časové ose, protože zobrazovátko nepochopí, že jde o datum.

Správná klasifikace datových typů ale není samozřejmě jen o vizualizaci. Tím úplně nejzákladnějším důvodem je velikost data. Pro každý datový typ je vyhrazeno větší či menší množství paměti - v praxi to znamená, že z hlediska místa je výhodnější mít uloženu informaci jako boolean (muž - 1 ano / 0 ne) než jako text “muž - ano”. Jakou mají jednotlivé datové typy velikost se dočtete například zde

Nerada bych tu popisovala celou problematiku datových typů, na to jsem malý pán. Datové typy mají různou klasifikaci a pro různé programovací jazyky se mohou lišit. Jak už mám ale ve zvyku, tady je pár zajimavých odkazů, které se datovými typy zabývají trochu podrobněji: 

Eva

Máte k článku nějaké otázky nebo připomínky? Klidně mi napište, ráda to s Vámi proberu :-)

Eva Hankusová
detektiv nových příležitostí
LinkedIn

Dataři: Kdo jsme a jak už si nás mezi sebou neplést | Mňamka #526

Dataři: Kdo jsme a jak už si nás mezi sebou neplést | Mňamka #526

Jaké role můžete poznat v oblasti datové analýzy? Role jako je např. datový inženýr, datový analytik a datový vědec, a jaká je jejich funkce a proč je důležité rozlišovat mezi těmito profesemi? Vysvětlíme, jak každá z těchto rolí přispívá k Business Intelligence a jaké jsou jejich klíčové rozdíly.

Data Storytelling: Rychlé vs Pomalé datové myšlení | Mňamka #525

Data Storytelling: Rychlé vs Pomalé datové myšlení | Mňamka #525

Znáte ten pocit, když se už několik desítek minut hrabete ve složité tabulce a stále nemůžete najít odpovědi na svoje otázky? My už dávno ne. Umíme si totiž najít zkratku z pomalého myšlení do toho rychlého.

Keboola a Kai PromtLab | Mňamka #524

Keboola a Kai PromtLab | Mňamka #524

Objavte PromptLab, sofistikované riešenie od Kebooly a Kai PromtLab na zlepšenie interakcií s umelou inteligenciou. V tomto článku sa dozviete, ako PromptLab využíva technológiu Streamlit na automatické prispôsobovanie výziev za účelom dosiahnutia lepšej jasnosti a presnosti vo vašich projektoch. Oboznámte sa s intuitívnym rozhraním, ktoré vám umožní porovnávať výsledky a optimalizovať pracovné postupy.