Základní datové typy | Mňamka #41
Datový typ je jednoduše atributem dat, který říká kompilátoru nebo interpretovi, jak programátor hodlá data použít. Většina programovacích jazyků podporuje běžné datové typy reálných , celých a booleovských . Datový typ omezuje hodnoty, které může mít výraz , například proměnná nebo funkce. Tento datový typ definuje operace, které lze s daty provádět, význam dat a způsob, jakým lze uložit hodnoty tohoto typu. Typ hodnoty, ze které může výraz vzít svou hodnotu. (zdroj wiki)
Uf. Toť definice. Co to ale ve skutečnosti znamená? Vědět, o jaký datový typ se jedná je úplný základ datové analytiky. Správná klasifikace nám ulehčí spoustu budoucích troubles. Když jsem začínala s datovou analytikou, o datových typech jsem samozřejmě slyšela, ale moc mi to hned nedocvaklo :-) Postřehla jsem to až ve chvíli, kdy jsem se učila s vizualizačním nástrojem - pokud totiž neoznačíte správně datový typ hned na startu, bude vám i to nejlepší zobrazovátko ukazovat nesmysly. Například máte-li sloupec “rok” označený jako “text - string” - pokud nezměníte datový typ na “datum - date”, nikdy nebudete schopni zobrazit data (rok) v časové ose, protože zobrazovátko nepochopí, že jde o datum.

Správná klasifikace datových typů ale není samozřejmě jen o vizualizaci. Tím úplně nejzákladnějším důvodem je velikost data. Pro každý datový typ je vyhrazeno větší či menší množství paměti - v praxi to znamená, že z hlediska místa je výhodnější mít uloženu informaci jako boolean (muž - 1 ano / 0 ne) než jako text “muž - ano”. Jakou mají jednotlivé datové typy velikost se dočtete například zde.
Nerada bych tu popisovala celou problematiku datových typů, na to jsem malý pán. Datové typy mají různou klasifikaci a pro různé programovací jazyky se mohou lišit. Jak už mám ale ve zvyku, tady je pár zajimavých odkazů, které se datovými typy zabývají trochu podrobněji:
- Analýza a vizualizace dat v jazyce R - jasné shrnutí datových typů v R
- Datové typy v SQL
- Základní datové typy v Python
Eva
AI Audit: Když chcete vědět, kde ve firmě AI dává smysl (a kde ne)| Mňamka #552
Znáte to – CEO se vrátí z konference a ptá se „a my s tou AI něco děláme?“, IT má pět různých nápadů, co by se dalo zkusit, marketing chce chatbota, a ve skutečnosti nikdo přesně neví, co z toho má smysl a kde začít. AI audit je pro firmy, které nechtějí jen naskakovat do vlaku, ale chtějí vědět, kam ten vlak vlastně jede. Typicky to jsou střední a velké společnosti, které už mají digitalizované procesy a nějaká data – a teď zjišťují, že „AI strategie“ nemůže být „zkusíme, uvidíme“.
Metadata management: Proč je katalog dat nutností, ne luxusem | Mňamka #551
“Metadata jsou data o datech.“ - tohle, když od nás slyšeli profesoři na VŠE (Vysoké škole ekonomické), rovnou nás poslali ze zkoušky domů s tím, že se za nedlouho opět uvidíme. 😀Ona je to sice pravda, ale nejde ani tak úplně o jednu pevně stanovenou “definici” jako spíš o tu samotnou podstatu. Díky metadatům organizace chápe svá data, své systémy i pracovní postupy, protože metadata popisují, vysvětlují a usnadňují vyhledání, použití a správu jakéhokoliv datového zdroje.
7 nejběžnějších promptů datového analytika a inženýra | Mňamka #550
Datoví analytici a inženýři tráví spoustu času rutinními úkoly – od čištění dat až po ladění kódu. Umělá inteligence dnes dokáže část téhle práce výrazně urychlit. Klíčem je dobře napsaný prompt – zadání, kterým AI přesně řeknete, co má udělat. Podívejme se na 7 promptů, které se v praxi hodí nejčastěji.



