Nový způsob transformace dat: Co to je dbt | Mňamka #129

Máme technologie, které milujeme, máme je odzkoušené a umíme je. To ale rozhodně neznamená, že stále netestujeme nové. A tak jsme narazili na dbt (Data Build Tool) - open source, který nás hodně baví.

Než si řekneme víc, pojďme o krok zpět. Máme data ve zdrojových systémech a ve finále se na ně potřebujeme koukat třeba v nějakém vizualizačním nástroji. Ale než se podíváme na pěkný grafíky a rozjedeme naplno business intelligence, musíme ujít ještě dlouhou cestu (který datový analytik by neznal, že...). No a ta cesta je zjednodušeně v zásadě dvojí. Buď si data vezmeme ze zdrojového systému (extract), cestou v nich uklidíme  (transform) a upravené je natáhneme do cíle (třeba cílový data warehouse) = ETL (na to se dá využít například nástroj Keboola nebo si to můžeme postavit na cloudových službách), nebo je ze zdrojového systému vytáhneme tak jak jsou a ten úklid děláme až v cíli, plus často až když je potřeba = ELT.

Co to je dbt?

Je to nástroj, který se v ELT stará o to “T”. Základem je projekt, který se konfiguruje sadou YAML souborů a SQL souborů s makry.
 

Zdroj obrázku: https://blog.getdbt.com/what--exactly--is-dbt-/

V čem je jeho kouzlo?


Tím, že dbt podporuje makra v SQL spojuje silu skriptovacího jazyka Python a SQL. Umožňuje používat cykly pro generování SQL, takže minimalizuje kopírování kóduAutomatické testování - stačí popsat, jak mají vypadat data, která vystupují z transformace, a dbt se postará o to, že to tak fakt je. 
 

Prostě kouzlo dbt je v tom, že k tomu “T” přistupuje tak, že se snaží usnadňovat věci, který jsou často třeba a je nutný je řešit opakováním kódu, případně kódem, kterej je náchylnej k chybám. V případě, že se něco změní v datech, transformace s dbt se dají napsat tak, že to dbt buď pozná a řekne, že je něco špatně, nebo na to bude připravený a zařídí, že se nestane nic špatného.

A mimojiné - je to opensource s velmi snadnou instalací. Správa kódu v gitu, která podporuje CI/CD principy a spolupráci týmu na projektu. Dá se integrovat do existující pipeline, de facto poběží všude, kde běží Python.

Za nás je to pecka. Chcete vědět víc? Mrkněte výše na Tomovo video. 

Zapomněla jsem na něco? Chcete se na něco zeptat? Napište mi. 

Eva

Eva Hankusová
detektiv nových příležitostí
LinkedIn

Dataři: Kdo jsme a jak už si nás mezi sebou neplést | Mňamka #526

Dataři: Kdo jsme a jak už si nás mezi sebou neplést | Mňamka #526

Jaké role můžete poznat v oblasti datové analýzy? Role jako je např. datový inženýr, datový analytik a datový vědec, a jaká je jejich funkce a proč je důležité rozlišovat mezi těmito profesemi? Vysvětlíme, jak každá z těchto rolí přispívá k Business Intelligence a jaké jsou jejich klíčové rozdíly.

Data Storytelling: Rychlé vs Pomalé datové myšlení | Mňamka #525

Data Storytelling: Rychlé vs Pomalé datové myšlení | Mňamka #525

Znáte ten pocit, když se už několik desítek minut hrabete ve složité tabulce a stále nemůžete najít odpovědi na svoje otázky? My už dávno ne. Umíme si totiž najít zkratku z pomalého myšlení do toho rychlého.

Keboola a Kai PromtLab | Mňamka #524

Keboola a Kai PromtLab | Mňamka #524

Objavte PromptLab, sofistikované riešenie od Kebooly a Kai PromtLab na zlepšenie interakcií s umelou inteligenciou. V tomto článku sa dozviete, ako PromptLab využíva technológiu Streamlit na automatické prispôsobovanie výziev za účelom dosiahnutia lepšej jasnosti a presnosti vo vašich projektoch. Oboznámte sa s intuitívnym rozhraním, ktoré vám umožní porovnávať výsledky a optimalizovať pracovné postupy.