Nový způsob transformace dat: Co to je dbt | Mňamka #129
Máme technologie, které milujeme, máme je odzkoušené a umíme je. To ale rozhodně neznamená, že stále netestujeme nové. A tak jsme narazili na dbt (Data Build Tool) - open source, který nás hodně baví.
Než si řekneme víc, pojďme o krok zpět. Máme data ve zdrojových systémech a ve finále se na ně potřebujeme koukat třeba v nějakém vizualizačním nástroji. Ale než se podíváme na pěkný grafíky a rozjedeme naplno business intelligence, musíme ujít ještě dlouhou cestu (který datový analytik by neznal, že...). No a ta cesta je zjednodušeně v zásadě dvojí. Buď si data vezmeme ze zdrojového systému (extract), cestou v nich uklidíme (transform) a upravené je natáhneme do cíle (třeba cílový data warehouse) = ETL (na to se dá využít například nástroj Keboola nebo si to můžeme postavit na cloudových službách), nebo je ze zdrojového systému vytáhneme tak jak jsou a ten úklid děláme až v cíli, plus často až když je potřeba = ELT.
Co to je dbt?
Je to nástroj, který se v ELT stará o to “T”. Základem je projekt, který se konfiguruje sadou YAML souborů a SQL souborů s makry.

Zdroj obrázku: https://blog.getdbt.com/what--exactly--is-dbt-/
V čem je jeho kouzlo?
Tím, že dbt podporuje makra v SQL spojuje silu skriptovacího jazyka Python a SQL. Umožňuje používat cykly pro generování SQL, takže minimalizuje kopírování kódu. Automatické testování - stačí popsat, jak mají vypadat data, která vystupují z transformace, a dbt se postará o to, že to tak fakt je.
Prostě kouzlo dbt je v tom, že k tomu “T” přistupuje tak, že se snaží usnadňovat věci, který jsou často třeba a je nutný je řešit opakováním kódu, případně kódem, kterej je náchylnej k chybám. V případě, že se něco změní v datech, transformace s dbt se dají napsat tak, že to dbt buď pozná a řekne, že je něco špatně, nebo na to bude připravený a zařídí, že se nestane nic špatného.
A mimojiné - je to opensource s velmi snadnou instalací. Správa kódu v gitu, která podporuje CI/CD principy a spolupráci týmu na projektu. Dá se integrovat do existující pipeline, de facto poběží všude, kde běží Python.
Za nás je to pecka. Chcete vědět víc? Mrkněte výše na Tomovo video.
Zapomněla jsem na něco? Chcete se na něco zeptat? Napište mi.
Eva
AI Audit: Když chcete vědět, kde ve firmě AI dává smysl (a kde ne)| Mňamka #552
Znáte to – CEO se vrátí z konference a ptá se „a my s tou AI něco děláme?“, IT má pět různých nápadů, co by se dalo zkusit, marketing chce chatbota, a ve skutečnosti nikdo přesně neví, co z toho má smysl a kde začít. AI audit je pro firmy, které nechtějí jen naskakovat do vlaku, ale chtějí vědět, kam ten vlak vlastně jede. Typicky to jsou střední a velké společnosti, které už mají digitalizované procesy a nějaká data – a teď zjišťují, že „AI strategie“ nemůže být „zkusíme, uvidíme“.
Metadata management: Proč je katalog dat nutností, ne luxusem | Mňamka #551
“Metadata jsou data o datech.“ - tohle, když od nás slyšeli profesoři na VŠE (Vysoké škole ekonomické), rovnou nás poslali ze zkoušky domů s tím, že se za nedlouho opět uvidíme. 😀Ona je to sice pravda, ale nejde ani tak úplně o jednu pevně stanovenou “definici” jako spíš o tu samotnou podstatu. Díky metadatům organizace chápe svá data, své systémy i pracovní postupy, protože metadata popisují, vysvětlují a usnadňují vyhledání, použití a správu jakéhokoliv datového zdroje.
7 nejběžnějších promptů datového analytika a inženýra | Mňamka #550
Datoví analytici a inženýři tráví spoustu času rutinními úkoly – od čištění dat až po ladění kódu. Umělá inteligence dnes dokáže část téhle práce výrazně urychlit. Klíčem je dobře napsaný prompt – zadání, kterým AI přesně řeknete, co má udělat. Podívejme se na 7 promptů, které se v praxi hodí nejčastěji.



