Metriky a dimenze | Mňamka #64

Já vím, já vím! Je to přece úplně triviální záležitost... Ale...Jste si tím jisti? 

Často se při lektorování studentek ptám, co to je metrika a dimenze. Odpovědi jsou různé a ne vždy je v tom úplně jasno. A tak jsem se rozhodla vrátit k úplným základům a postupně je probrat. Vítejte v takové malé bizztreat akademii :-)

Tabulka jako základní stavební jednotka

Než se podíváme na samotné metriky a dimenze, je potřeba se podívat o krok zpět. Tabulka patří do tzv. strukturovaných dat (o tom si povíme někdy příště). Asi každý znás je schopen říct, že tabulka - představte si třeba tu klasickou excelovou - má nějaké řádky a sloupce. To je dobrý start, ale pro datového analytika je to trochu málo. 

Takže, z čeho se taková obyčejná tabulka může skládat:

  • řádky a sloupce
  • datové typy - přečtěte si více o základních datových typech: Základní datové typy
  • identifikátory - projdeme si někdy příště (id_klienta a id_sidlo)
  • fakta -> metriky (hodnoty)
  • atributy, dimenze (charakteristiky)

A protože se nejlépe vysvětluje na příkladu - tady je tabulka, která všechno vyjmenované obsahuje:

Organizace se stává tím, co měří

Na začátku je potřeba si říci, jaké sloupce jsou pro nás důležité a v tabulce by měly zůstat. Některé tabulky jsou plné informací, které vlastně ani nebudeme potřebovat. Než se tedy do něčeho pustíte, je nutnost si dobře definovat use case nebo výstupy. Je dobré si například položit otázky:

  • Čeho hodlám dosáhnout?
  • Jaké chování sleduji?
  • Co naplňuje moje cíle?

A o tom to vlastně je - abyste si mohli navrhnout dobrý datový model, který bude splňovat business požadavky, musíte vědět, na co se chcete dívat (fakta, metriky) a přes co (atributy, dimenze).

Fakta

jsou vlastně konkrétní hodnoty - čísla, ukazatele, absolutní hodnoty - které chceme sledovat, se kterými chceme počítat - prostě, které pro nás mají nějaký business význam. V naší tabulce jsou to sloupce pocet_aut a najete_km.

Metriky

metrika je agregace faktu - čili už nějaký výpočet s fakty. V naší tabulce je to sloupec SUM_auta_km - protože nás zajímá, kolik celkově naše auta ujela - např. ten daný rok. Prostě nás jednoduše zajímá - kolik.

Datům přiřadíme atributy a koukáme na ně v dimenzích

Dalším krokem je otázka - jak se na data (fakta, metriky) potřebujeme dívat? 

Atributy

Každé hodnotě můžeme přiřadit tzv. atribut - v podstatě je to nějaký popis - charakteristika, podle které budeme chtít naše data filtrovat - u aut to může být např. barva auta, typ auta a v naší tabulce to asi nejlépe vystihuje sloupec sidlo a klient. Na první pohled by to měl být i sloupec rok, ale my ho budeme řadit do tzv. datumové dimenze - viz níže.

Dimenze

Když víte, na co se chcete dívat (metriky), tak druhým krokem je vědět "přes co" se na data chcete dívat = dimenze. Já je ráda dělím na 3 základní druhy - prostě jednoduše kdo, kdy a kde:

  • demografické dimenze - např. pohlaví, věk, muž/žena, ...
  • časové (datumové) dimenze - např. rok, měsíc, hodina, ... 
  • interní dimenze - každá firma může mít své vlastní - např. oblast, segment, kategorie, ...

Často se setkávám i s jinými definicemi nebo dělením. Takže pokud máte nějaký svůj pohled nebo si myslíte, že to je jinak, napište mi! 

Eva

Máte k článku nějaké otázky nebo připomínky? Klidně mi napište, ráda to s Vámi proberu :-)

Eva Hankusová
detektiv nových příležitostí
LinkedIn

Banana data podcast | Mňamka #242

Banana data podcast | Mňamka #242

Chcete být v obraze a vědět, co se aktuálně děje ve světě dat? Slyšeli jste o Banana Data Podcastu? Pokud vás baví technologické trendy a témata jako zjednodušování AI, etická dilemata AI, otazníky proč a jak v datové vědě a mnoho dalších, můžeme vřele doporučit! Banana data podcasty už nějaký ten rok jedou a je z čeho vybírat!

APIFY: 10 nejlepších nástrojů pro web scraping | Mňamka #241

APIFY: 10 nejlepších nástrojů pro web scraping | Mňamka #241

Chcete být v obraze a vědět, co se aktuálně děje ve světě dat? Slyšeli jste o Banana Data Podcastu? Pokud vás baví technologické trendy a témata jako zjednodušování AI, etická dilemata AI, otazníky proč a jak v datové vědě a mnoho dalších, můžeme vřele doporučit! Banana data podcasty už nějaký ten rok jedou a je z čeho vybírat!

Ze života datového detektiva I. - Průvodce světem dat

Ze života datového detektiva I. - Průvodce světem dat

Hodně často kolem sebe slýcháme otázku: a co že vy teda děláte? První díl z celkem čtyř o tom, jak datový detektiv funguje v každodenním životě. Naše práce je opravdu hodně komplexní a musíme zdatně propojovat analytické a businessové skills. Začneme tím, jak probíhá náš první kontakt se zákazníkem! Datový detektiv je totiž také obchoďák a accounťák. Eva a Rado vám umožní nahlédnout do svých běžných pracovních dnů. Co dělají? Jak probíhají první jednání s budoucími zákazníky a co je na tom baví?