Metriky a dimenze | Mňamka #64

Já vím, já vím! Je to přece úplně triviální záležitost... Ale...Jste si tím jisti? 

Často se při lektorování studentek ptám, co to je metrika a dimenze. Odpovědi jsou různé a ne vždy je v tom úplně jasno. A tak jsem se rozhodla vrátit k úplným základům a postupně je probrat. Vítejte v takové malé bizztreat akademii :-)

Tabulka jako základní stavební jednotka

Než se podíváme na samotné metriky a dimenze, je potřeba se podívat o krok zpět. Tabulka patří do tzv. strukturovaných dat (o tom si povíme někdy příště). Asi každý znás je schopen říct, že tabulka - představte si třeba tu klasickou excelovou - má nějaké řádky a sloupce. To je dobrý start, ale pro datového analytika je to trochu málo. 

Takže, z čeho se taková obyčejná tabulka může skládat:

  • řádky a sloupce
  • datové typy - přečtěte si více o základních datových typech: Základní datové typy
  • identifikátory - projdeme si někdy příště (id_klienta a id_sidlo)
  • fakta -> metriky (hodnoty)
  • atributy, dimenze (charakteristiky)

A protože se nejlépe vysvětluje na příkladu - tady je tabulka, která všechno vyjmenované obsahuje:

Organizace se stává tím, co měří

Na začátku je potřeba si říci, jaké sloupce jsou pro nás důležité a v tabulce by měly zůstat. Některé tabulky jsou plné informací, které vlastně ani nebudeme potřebovat. Než se tedy do něčeho pustíte, je nutnost si dobře definovat use case nebo výstupy. Je dobré si například položit otázky:

  • Čeho hodlám dosáhnout?
  • Jaké chování sleduji?
  • Co naplňuje moje cíle?

A o tom to vlastně je - abyste si mohli navrhnout dobrý datový model, který bude splňovat business požadavky, musíte vědět, na co se chcete dívat (fakta, metriky) a přes co (atributy, dimenze).

Fakta

jsou vlastně konkrétní hodnoty - čísla, ukazatele, absolutní hodnoty - které chceme sledovat, se kterými chceme počítat - prostě, které pro nás mají nějaký business význam. V naší tabulce jsou to sloupce pocet_aut a najete_km.

Metriky

metrika je agregace faktu - čili už nějaký výpočet s fakty. V naší tabulce je to sloupec SUM_auta_km - protože nás zajímá, kolik celkově naše auta ujela - např. ten daný rok. Prostě nás jednoduše zajímá - kolik.

Datům přiřadíme atributy a koukáme na ně v dimenzích

Dalším krokem je otázka - jak se na data (fakta, metriky) potřebujeme dívat? 

Atributy

Každé hodnotě můžeme přiřadit tzv. atribut - v podstatě je to nějaký popis - charakteristika, podle které budeme chtít naše data filtrovat - u aut to může být např. barva auta, typ auta a v naší tabulce to asi nejlépe vystihuje sloupec sidlo a klient. Na první pohled by to měl být i sloupec rok, ale my ho budeme řadit do tzv. datumové dimenze - viz níže.

Dimenze

Když víte, na co se chcete dívat (metriky), tak druhým krokem je vědět "přes co" se na data chcete dívat = dimenze. Já je ráda dělím na 3 základní druhy - prostě jednoduše kdo, kdy a kde:

  • demografické dimenze - např. pohlaví, věk, muž/žena, ...
  • časové (datumové) dimenze - např. rok, měsíc, hodina, ... 
  • interní dimenze - každá firma může mít své vlastní - např. oblast, segment, kategorie, ...

Často se setkávám i s jinými definicemi nebo dělením. Takže pokud máte nějaký svůj pohled nebo si myslíte, že to je jinak, napište mi! 

Eva

Máte k článku nějaké otázky nebo připomínky? Klidně mi napište, ráda to s Vámi proberu :-)

Eva Hankusová
detektiv nových příležitostí
LinkedIn

Jak předvídat chování zákazníků: Churn, životní hodnota a další klíčové ukazatele | Mňamka #542

Jak předvídat chování zákazníků: Churn, životní hodnota a další klíčové ukazatele | Mňamka #542

MS Fabric: Pojďte si s námi vytvořit první pipeline - 2.část | Mňamka #541

MS Fabric: Pojďte si s námi vytvořit první pipeline - 2.část | Mňamka #541

Otevřeli jste poprvé MS Fabric a vůbec se nerorientujete? Už máte zadání a nevíte kam dřív? V tom případě jste tady správně, protože vás provedeme prvními krůčky, jak si dotáhnout do Fabricu první data, zpracovat je a nastavit celý proces v jednoduché pipeline. Ukažte ostatním, jak se to dělá! V tomto článku si představíme konkrétně kroky jako kopírování dat, dataflow, notebooky a zprovoznění pipeline.

MS Fabric: Pojďte si s námi vytvořit první pipeline - 1.část | Mňamka #540

MS Fabric: Pojďte si s námi vytvořit první pipeline - 1.část | Mňamka #540

Otevřeli jste poprvé MS Fabric a vůbec se nerorientujete? Už máte zadání a nevíte kam dřív? V tom případě jste tady správně, protože vás provedeme prvními krůčky, jak si dotáhnout do Fabricu první data, zpracovat je a nastavit celý proces v jednoduché pipeline. Ukažte ostatním, jak se to dělá! V tomto článku si představíme konkrétně kroky jako kopírování dat, dataflow, notebooky a zprovoznění pipeline.