Jak mít uklizeno ve vizualizační platformě (GoodData) | Mňamka #126

Mít uklizeno ve vizualizační platformě je občas docela oříšek. Co dělat, abychom se z toho nezbláznili a nestrávili víc času hledáním metriky/reportu než analytickou prací samotnou? 

Máme tu pár tipů pro pořádek v GoodData, ale většina aktivit může být aplikována i na ostatní vizualizační tools.

Nepleťte si pojmy s dojmy

Vše začíná u výstižných a konzistentních názvů (aneb nenazývejte operátora v jedné tabulce agentem a v druhé userem :) To se hrozně lehce řekne, ale není to tak jednoduché dodržet že? Systémy i lidé se střídají/migrují a "entropie vzrůstá"...

Jak z toho ven? Zaveďte v podniku businessový slovník (ve kterém lze mimojiné fulltextově vyhledávat) a zařaďte ho do procesu validace nových či změnových požadavků. Jeho samotné vytváření vás donutí jasně definovat pojmy (včetně metrik), uživatelům nebudete muset furt vysvětlovat, kdo je a kdo už není nový zákazník a nám datařům toho operátora/agenta/usera můžete mlátit o hlavu dokud to jednoho krásného dne nesjednotíme. Předejdete tím i vytváření duplicitních metrik.

Utřiďte si Data Catalog

V novém GoodData si můžete zapnout roztřídění dle Folders, což vám atributy roztřídí dle tabulek a metriky dle složek. Já osobně preferuju zapnout rozbalení seznamu jako defaultní chování. Pokud toto roztřídění z jakéhokoliv důvodu nepoužíváte, tak se v GoodData vyplatí do každého názvu sloupce přidat i do závorky i název tabulky.

Využívejte Drill Down Paths

Naučte uživatele drillovat (nejen) do hierarchie atributu. Ušetříte tím nejen GoodData šťávu, ale hlavně se zbavíte spousty reportů, které vlastně ukazují to samé, jen přes jinou úroveň detailu.

Dolujte metadata

GoodData metadata lze používat pro optimalizaci LDM skrze identifikaci nepoužívaných tabulek či atributů, úklid nepoužívaných či duplicitních metrik i reportů, zajištění konzistence metrik napříč více projekty (metrika je stejně definovaná ve všech projektech) nebo i pro aktualizace výše zmíněného businessového slovníku (související objekty, definice, popis metriky).

Zapomněla jsem na něco? Chcete se na něco zeptat? Napište mi. 

Verča

Veronika Špryslová
datový detektiv
LinkedIn

Seznamte se s Kats - jednotným kontaktním místem pro analýzu časových řad | Mňamka #203

Seznamte se s Kats - jednotným kontaktním místem pro analýzu časových řad | Mňamka #203

Pojďme se podívat na Kats – novou knihovnu v Pythonu pro analýzu časových řad! Kats je elegantně použitelný framework pro obecnou analýzu časových řad, včetně předpovědí nebo vícerozměrné analýzy a extrakce/vložení funkcí. Poskytuje klasické i pokročilé techniky pro modelování dat časových řad!

Jak si přidat vlastní KPIs do Airflow | Mňamka #202

Jak si přidat vlastní KPIs do Airflow | Mňamka #202

Airflow nám umožňuje programově vytvářet, plánovat a následně sledovat workflow. Standardní UI v Airflow nám umožňuje zobrazit pipelines a filtry. Jenže.. jak se zvyšuje počet pipelines, stává se mnohem složitější vyfiltrovat to, co potřebujeme. Jak si přidat vlastní pohledy/filtry na vaše DAGs v Airflow? Podívejte se, jak na to!

Jak využít Pohodu (a jiné datové zdroje) v BI? | Mňamka #201

Jak využít Pohodu (a jiné datové zdroje) v BI? | Mňamka #201

Vědět, v jaké je firma finanční kondici a kam pluje je jedna z klíčových věcí pro její správné kormidlování. Jenže jak to dát všechno dohromady? Jak využít všechny ty datové zdroje, které máme k dispozici? Potřebujete mít všechny finanční pohledy aktuální pár minut po zaúčtování dokladu? Pojďme se na to podívat krok za krokem – jen namátkově vytvoření mappingů, očištění dat, datový model a na závěr už chybí jen pár vymazlených dashboardů!