Jak mít uklizeno ve vizualizační platformě (GoodData) | Mňamka #126

Mít uklizeno ve vizualizační platformě je občas docela oříšek. Co dělat, abychom se z toho nezbláznili a nestrávili víc času hledáním metriky/reportu než analytickou prací samotnou? 

Máme tu pár tipů pro pořádek v GoodData, ale většina aktivit může být aplikována i na ostatní vizualizační tools.

Nepleťte si pojmy s dojmy

Vše začíná u výstižných a konzistentních názvů (aneb nenazývejte operátora v jedné tabulce agentem a v druhé userem :) To se hrozně lehce řekne, ale není to tak jednoduché dodržet že? Systémy i lidé se střídají/migrují a "entropie vzrůstá"...

Jak z toho ven? Zaveďte v podniku businessový slovník (ve kterém lze mimojiné fulltextově vyhledávat) a zařaďte ho do procesu validace nových či změnových požadavků. Jeho samotné vytváření vás donutí jasně definovat pojmy (včetně metrik), uživatelům nebudete muset furt vysvětlovat, kdo je a kdo už není nový zákazník a nám datařům toho operátora/agenta/usera můžete mlátit o hlavu dokud to jednoho krásného dne nesjednotíme. Předejdete tím i vytváření duplicitních metrik.

Utřiďte si Data Catalog

V novém GoodData si můžete zapnout roztřídění dle Folders, což vám atributy roztřídí dle tabulek a metriky dle složek. Já osobně preferuju zapnout rozbalení seznamu jako defaultní chování. Pokud toto roztřídění z jakéhokoliv důvodu nepoužíváte, tak se v GoodData vyplatí do každého názvu sloupce přidat i do závorky i název tabulky.

Využívejte Drill Down Paths

Naučte uživatele drillovat (nejen) do hierarchie atributu. Ušetříte tím nejen GoodData šťávu, ale hlavně se zbavíte spousty reportů, které vlastně ukazují to samé, jen přes jinou úroveň detailu.

Dolujte metadata

GoodData metadata lze používat pro optimalizaci LDM skrze identifikaci nepoužívaných tabulek či atributů, úklid nepoužívaných či duplicitních metrik i reportů, zajištění konzistence metrik napříč více projekty (metrika je stejně definovaná ve všech projektech) nebo i pro aktualizace výše zmíněného businessového slovníku (související objekty, definice, popis metriky).

Zapomněla jsem na něco? Chcete se na něco zeptat? Napište mi. 

Verča

Veronika Špryslová
datový detektiv
LinkedIn

Síla dobře navržených dashboardů a KPI | Mňamka #535

Síla dobře navržených dashboardů a KPI | Mňamka #535

V dnešní době chce být každý "data-driven" – rozhodovat se na základě dat, a ne podle pocitů. Jedním z klíčových způsobů, jak toho dosáhnout, jsou správně nastavené KPI a přehledné dashboardy. Ty poskytují jasný přehled o výkonnosti a pomáhají firmám činit rozhodnutí, která opravdu stojí na datových základech, ne na odhadech.

Klíčové ukazatele výkonnosti (KPI): Jak je správně nastavit a efektivně vyhodnotit pomocí business intelligence | Mňamka #534

Klíčové ukazatele výkonnosti (KPI): Jak je správně nastavit a efektivně vyhodnotit pomocí business intelligence | Mňamka #534

Jak efektivně řídit růst a sledovat dosažení cílů? Jak klíčové ukazatele výkonnosti (KPI) pomáhají firmám zlepšovat výkon a naplňovat strategické záměry?V článku najdete příklady KPI pro oblasti jako finance, marketing, zákaznický servis, výroba, lidské zdroje a IT, včetně praktických příkladů jejich využití. Zjistěte, jak zavést a sledovat KPI, abyste získali lepší přehled o efektivitě klíčových procesů.

Datové sklady, jezera a lakehouse: Jak vybrat správnou architekturu pro správu dat? | Mňamka #533

Datové sklady, jezera a lakehouse: Jak vybrat správnou architekturu pro správu dat? | Mňamka #533

Svět správy dat prošel rychlým vývojem, který je poháněn rostoucí potřebou zpracovávat a analyzovat obrovské množství dat v reálném čase. Firmy, které chtějí porozumět svým datům, narazily na různé architektury – datové sklady, datová jezera a nyní i tzv. lakehouse – které nabízejí různé možnosti pro ukládání a správu dat. Tento článek se zabývá těmito třemi architekturami, porovnává jejich výhody a nevýhody a podrobněji se zaměřuje na lakehouse, nejnovější inovaci, která se snaží řešit problémy z dřívějších systémů.