Design pattern #6: Události v datech | Mňamka #237
Máme tu další várku design patternů! Pojďme si ukázat, jak můžeme pracovat s událostmi v datech - zajímá vás, co předcházelo zákaznické registraci? Průměrný počet dní mezi objednávkami? Nebo jak se mění zdroj návštěv u jednotlivých klientů? Není to nic složitého!
1. Absolutní pořadí v rámci “partition” (např. klienta)
Typickým use casem pro tohle řešení je například analytika akvizičního “funnelu”, kdy sledujete jakým způsobem (a odkud) uživatel přicházel na Váš produktový web předtím, než se zaregistroval nebo udělal nákup. Může Vám to velmi pomoci v pochopení patternů chování jednotlivých zákazníků, nebo skupin, nebo třeba odhalit mezery v akvizičním procesu
Podobně jako v případě “prvního výskytu” události, First = yes / no, můžeme očíslovat pořadí výskytu událostí v rámci jedné partition (např. 1., 2., 3. objednávka, návštěva webu apod. konkrétního zákazníka).
Níže se můžete podívat na příklad konkrétního SQL (Snowflake), kterým se tohle řeší. Napadá Vás k čemu dalšímu by se tenhle vzor dal použít?

2. Days_since_previous jako fakt i sgroupovaný atribut
Dny od předchozí události, typicky objednávky, ukládáme jako fakt (počet dní) i jako zgroupovaný atribut (tj. uplynulo od poslední objednávky třeba měně než 7 dní, 14 dní, 30 dní, 90+ dní…). Případně mohou být kategoie disjunktní (0-7 dní, 8-14 dní...), záleží na konkrétním use-case.
Proč? Z počtu dní od poslední objednávky můžeme sledovat metriky jako průměrný počet dní mezi objednávkami. Přes sgupované atributy může uživatel snadno slicovat a sledovat chování zákazníků v jednotlivých kategoriích (např. nejvíce zákazníků udělá další objednávku jednou do měsíce, pokud se konkrétní zákazník posune do kategorie ‘90+ dní’, pravděpodobně ho firma ztratí...) Jedná se o typický use case, na který se hodí mít data připravená tak, aby si uživatel mohl snadno vytvářet reporty a metriky. Nehodí se jen pro e-shopy, ale třeba i pokud sledujeme návštěvnost libovolného webu a další use-cases.

Previous atributy
Previous atributy se typicky hodí pro vyhodnocení marketingových kampaní (např. zda se podařilo dostat návštěvníky z cpc do directu, nebo naopak, pokud přišli návštěvníci na web minule přímo a nyní přes placenou kampaň, je kampaň špatně zacílená...). V kombinaci s days_since_previous lze namodelovat celý acquisition funnel. V SQL spočítáme obdobně, pomocí window funkce LAG. Opět se jedná o typický use case.
Máte nějaký další tip, který děláte “vždycky a všude”?
WEBINÁŘ: Manažer a AI
V dnešním byznyse je AI všude! Ale jak ji opravdu využít k růstu, i když nejste IT expert? Tento webinář je připraven pro manažery, kteří chtějí jít dál než jen uvažovat o AI a začít ji reálně implementovat. Co se z webináře dozvíte? Záznam webináře vám nabídne praktické tipy, konkrétní nástroje a jasné návody, jak transformovat vaše nápady do hmatatelných AI řešení.
Umělá inteligence ve firemních nástrojích: skvělý pomocník, nebo zadní vrátka? | Mňamka #546
AI dnes najdete téměř v každém nástroji, který ve firmě používáte - od zpracování dat přes účetnictví, CRM a řízení úkolů až po zákaznickou podporu nebo e-mail. Všude se objevují „asistenti“, „copiloti“, „recommenders“ nebo prostě tlačítka s nápisem „zkus to s AI“. Než AI funkcionalitu ve vašem nástroji nadšeně zapnete, stojí za to se zamyslet: jak funguje, co sbírá, kam data posílá? Protože právě tady se mohou velmi snadno otevřít zadní vrátka do celé firmy – a s nimi i dost zásadní bezpečnostní rizika.
Jsou statické dashboardy v roce 2025 přežitek? | Mňamka #545
Dashboardy jsou v dnešní době stále ještě hlavním nástrojem, který umožňuje byznysu rychle zobrazit klíčové metriky, sledovat trendy nebo porovnávat výkonnost. A pořád tak hrají důležitou roli ve světě datové analytiky. Ale… kolik rozhodnutí se podle nich skutečně udělá?