Design Pattern #5: Transakční data | Mňamka #165
Transakční data jsou všude kolem nás. Položka objednávky eshopu, nákup v obchodě… jak s nimi “zacvičit” tak, abychom se nemuseli dřív nebo později vracet do transformace a přidávat požadovaný sloupec. Mrkněte na věci, které děláme automaticky… Proč? Protože věřte, že brzo na ně dojde řada.
1. First = yes / no
První výskyt události v datech vždy označíme. Jedná se o první objednávku zákazníka? Označíme ji first_order atributem.
Proč? Pokud si data takto předpřipravíme, vyhneme se tak zbytečně složitým výpočtům. Typicky se hodí pro počty nových zákazníků za určité období (suma first_order sloupce za toto období) a podobně.

2. Datum pro jednotlivé stavy
Změnu stavu objednávky/leadu a podobně zaznamenáváme pomocí datumových sloupců pro jednotlivé stavy. Pro každý stav, který může nastat, existuje samostatný sloupec. Např. objednávka přijatá, expedovaná, uzavřená a další.
Proč? Snadno tak vyhneme zmatku, kdyz se atribut stav mění v rámci jednoho sloupce. Navíc můžeme pro každý záznam snadno sledovat dobu trvání konkrétního stavu. Alternativou je podřízená tabulka s jednotlivými objednávky a datem. Obě řešení můžeme i zkombinovat, podle toho, co je pro daný use case nejvýhodnější.
3. Transpozice ze “sloupečků” na samostatné “řádky”
Typicky používáme pro slevy, dopravu a služby, storno. Ze slev na faktuře vyrobíme samostatný řádek (položku faktury se zápornou cenou). Stejně postupujeme v případě storna nebo dopravy a dalších služeb. A co taková sleva prostřednictvím slevového kupónu na dané objednávce? Jasně, další řádek!
Proč? Místo sčítání a odčítání hodnot v různých sloupcích při výpočtu tržeb, sčítáme jeden sloupec a snadno filtrujeme, jaký typ položek chceme do tržeb zahrnout. Pro zachování referenční integrity doplníme takto vzniklé položky do nadřízené tabulky (např. dopravu od konkrétního dodavatele do tabulky zboží).
Hodně eshopařů rádo vytváří sloupec kde “je všechno”, ten se většinou jmenuje “total price” … nenechte se zmást. Vyplatí se dát si tu práci a celý proces rozklíčovat a následně si vytvořit jednoduché položky, přes které můžete filtrovat. Ve finále si ušetřítě hromadu starostí ve vizualizaci.

Máte nějaký další tip, který děláte “vždycky a všude”?
Jak na pavučinové grafy | Mňamka #437
Pavučinové (neboli paprskové) grafy patří k nejimpozantnějším grafům, se kterými se v moderních byznysových vizualizacích můžete setkat. Hodí se např. k porovnání dvou produktů na základě široké škály různých ukazatelů. Nebo jsou hojně využívány ve sportovní analytice ke komparativnímu srovnání výkonů jednotlivých hráčů. Pro nezasvěcené publikum ale mohou být jen obtížně stravitelné. Dnes si proto ukážeme, jakých zásad se při vytváření pavučinových grafů držet a jak se v nich co nejlépe orientovat!
5 mýtů o cloudu | Mňamka #436
Řešit data v cloudu dává smysl čím dál většímu počtu firem. A není se čemu divit, cloud totiž nabízí neuvěřitelnou flexibilitu a jednoduchost použití. Přesto se ale stále najde spousta firem, které jedou kompletně on-premise a s přechodem na cloud váhají. Někdy má takové rozhodnutí objektivní důvody, často ale bývá spíše výsledkem mylných představ, které o cloudových datových skladech panují. A právě na to si posvítíme v této mňamce. Pojďte se se spolu s námi podívat na 5 nejčastějších mýtů o cloudu!
Pandas – k čemu slouží, k čemu jej raději nepoužijeme a jeho alternativy | Mňamka #435
Pandas je jednou z nejpoužívanějších knihoven pro zpracování dat v jazyce Python. Jeho největší předností je zejména jednoduchá a intuitivní syntaxe a také rychlost, se kterou můžete zpracovávat velké datové soubory. V BizzTreatu ho proto často využíváme např. pro ad hoc analýzy dat, kdy potřebujeme rychle prozkoumat, jak data vlastně vypadají a jaká je jejich kvalita. V dnešní mňamce od Báry si ukážeme, kde všude lze Pandas použít a jak si stojí v porovnání s ostatními knihovnami!