Data Maturity, neboli datová maturita | Mňamka #315

Data Maturity, neboli datová maturita. Co to je? Proč to je? K čemu nám to slouží? No … jednoduše podle toho poznáte v které fázi a jak daleko je firma v tom, jak pracuje s daty. Tohle téma by se dalo určitě rozepsat tak do takového detailu, že by vznikla diplomová práce, nicméně dneska se na to podíváme trochu v rychlosti ale věřím, že pár klíčových bodů si z toho odnesete!

Už je to pár let zpátky, co jsme společně vymysleli, jak se vlastně v čase vyvíjí to, jak firma s daty pracuje. Výsledkem byl náš “data maturity model”, který vidíte zde:

Někdy tomu říkáme “schodiště”, protože jdete krok za krokem. Na začátku Vám stačí Excel. Je to úplně v pohodě a normální. Dost malých firem si s Excelem vystačí, uřídí “to v excelu”. Jenomže nastane doba, kdy Vám Excel přestane stačit a začnete řešit jak to posunout dál. Jak celou práci s daty ve Vaší firmě pozvednout a mít z toho “větší value”. Tady většinou začnete řešit “kudy dál”, jak se do toho projektu pustit, vzít k tomu někoho? Najmout ho interně? Co je správné řešení? A co timing? Jsme na to už ready?

… otázky, samé otázky … nicméně …

Pokud se Vám “první projekt” povede nastane kýžený “wow efekt”, kdy zjistíte, že máte data denně a aktuální. Třeba jenom v jednom oddělení, jeden use case, ale i tak “wow! ono to funguje”. Poté nastane určitá fáze drobného vystřízlivění. Začnete řešit, jestli jsou data opravdu vždycky správně a pokrývají všechno co mají. Přidáváte další a další use cases a snažíte se, aby lidé ve firmě data používali a pracovali s nimi… někde tady nastává kritická fáze “data maturity”. Fáze, kdy se buduje důvěra uživatelů v data.

Tuhle fázi nejde přeskočit. Pokud to uděláte, nedopadne to dobře. Bude to fail. Tohle období může trvat klidně jeden nebo dva roky. Důvěru musíte budovat postupně. A navíc, jak říkal jeden náš kolega, (který si pak otevřel hospodu) - svíčkovou a důvěru ve výtahu neuvaříš! Takže musíte po schodech, je mi líto ;-)

Pokud se Vám povede to, že lidé mají důvěru v data / BI / analytiku, můžete si pogratulovat. Máte pravděpodobně pevné základy, na kterých můžete stavět další schůdky a pustit se postupně do prvních modelů a třeba někdy i “do toho ej-áj”.

No a pokud jste teprve na začátku, nezoufejte. Každý tam jednou byl. Začněte. Postupně. No a pokud jste přeskočili nějaký ze schodů a jedete modely, ale “nemáte uklizeno”, pak byste měli zpozornět…

Hodně štěstí!

Máte k článku nějaké otázky nebo připomínky? Klidně mi napište, rád to s Vámi proberu :-)

Jirka Tobolka
datový detektiv
LinkedIn

Jak ohodnotit lokalitu: Data vs. Pocity | Mňamka #523

Jak ohodnotit lokalitu: Data vs. Pocity | Mňamka #523

V dnešním dynamickém světě se může zdát, že rozhodování o tom, kde otevřít další pobočku, je náročné, a že v něm hraje roli až příliš mnoho faktorů. Často kladené dotazy, které dostáváme, se točí kolem hodnocení potenciálu konkrétních lokalit. V tomto článku vám ukážeme, jak Location Intelligence může poskytnout přesné odpovědi na vaše otázky a zajistit, že vaše rozhodnutí budou založena na datech a faktech, nikoli na pocitech a zdánlivé atraktivitě místa.

Vánoční dashboard datových detektivů | Mňamka #520

Vánoční dashboard datových detektivů | Mňamka #520

Chtěli jsme pro vás připravit nějaký netradiční obsah, trochu odlehčit, když jsou ty Vánoc a tak jsme sestavili dotazník s vánočně laděnými otázkami a poslali ho všem datovým detektivům, abychom zjistili, co pro naše kolegy Vánoce znamenají. A máme pro vás VÝSLEDKY! Pojďme na ně.

Tableau - Performance Tuning (časť 3.) | Mňamka #506

Tableau - Performance Tuning (časť 3.) | Mňamka #506

Chcete vědět, jak zlepšit rychlost a efektivitu vašeho dashboardu v Tableau? Tento článek vás seznámí s významem materializace výpočtů, výhodami agregace dat a důležitostí specifikace datových zdrojů. Navíc se dozvíte o nové funkci "workbook optimizer", která vám nabídne automatizované doporučení pro dosažení optimálního výkonu vašeho dashboardu. Přečtěte si více a dozvíte se, jak dosáhnout rychlejšího a hladšího provozu vašich vizualizací v Tableau.