Data Maturity, neboli datová maturita | Mňamka #315

Data Maturity, neboli datová maturita. Co to je? Proč to je? K čemu nám to slouží? No … jednoduše podle toho poznáte v které fázi a jak daleko je firma v tom, jak pracuje s daty. Tohle téma by se dalo určitě rozepsat tak do takového detailu, že by vznikla diplomová práce, nicméně dneska se na to podíváme trochu v rychlosti ale věřím, že pár klíčových bodů si z toho odnesete!

Už je to pár let zpátky, co jsme společně vymysleli, jak se vlastně v čase vyvíjí to, jak firma s daty pracuje. Výsledkem byl náš “data maturity model”, který vidíte zde:

Někdy tomu říkáme “schodiště”, protože jdete krok za krokem. Na začátku Vám stačí Excel. Je to úplně v pohodě a normální. Dost malých firem si s Excelem vystačí, uřídí “to v excelu”. Jenomže nastane doba, kdy Vám Excel přestane stačit a začnete řešit jak to posunout dál. Jak celou práci s daty ve Vaší firmě pozvednout a mít z toho “větší value”. Tady většinou začnete řešit “kudy dál”, jak se do toho projektu pustit, vzít k tomu někoho? Najmout ho interně? Co je správné řešení? A co timing? Jsme na to už ready?

… otázky, samé otázky … nicméně …

Pokud se Vám “první projekt” povede nastane kýžený “wow efekt”, kdy zjistíte, že máte data denně a aktuální. Třeba jenom v jednom oddělení, jeden use case, ale i tak “wow! ono to funguje”. Poté nastane určitá fáze drobného vystřízlivění. Začnete řešit, jestli jsou data opravdu vždycky správně a pokrývají všechno co mají. Přidáváte další a další use cases a snažíte se, aby lidé ve firmě data používali a pracovali s nimi… někde tady nastává kritická fáze “data maturity”. Fáze, kdy se buduje důvěra uživatelů v data.

Tuhle fázi nejde přeskočit. Pokud to uděláte, nedopadne to dobře. Bude to fail. Tohle období může trvat klidně jeden nebo dva roky. Důvěru musíte budovat postupně. A navíc, jak říkal jeden náš kolega, (který si pak otevřel hospodu) - svíčkovou a důvěru ve výtahu neuvaříš! Takže musíte po schodech, je mi líto ;-)

Pokud se Vám povede to, že lidé mají důvěru v data / BI / analytiku, můžete si pogratulovat. Máte pravděpodobně pevné základy, na kterých můžete stavět další schůdky a pustit se postupně do prvních modelů a třeba někdy i “do toho ej-áj”.

No a pokud jste teprve na začátku, nezoufejte. Každý tam jednou byl. Začněte. Postupně. No a pokud jste přeskočili nějaký ze schodů a jedete modely, ale “nemáte uklizeno”, pak byste měli zpozornět…

Hodně štěstí!

Máte k článku nějaké otázky nebo připomínky? Klidně mi napište, rád to s Vámi proberu :-)

Jirka Tobolka
datový detektiv
LinkedIn

Metadata management: Proč je katalog dat nutností, ne luxusem | Mňamka #551

Metadata management: Proč je katalog dat nutností, ne luxusem | Mňamka #551

“Metadata jsou data o datech.“ - tohle, když od nás slyšeli profesoři na VŠE (Vysoké škole ekonomické), rovnou nás poslali ze zkoušky domů s tím, že se za nedlouho opět uvidíme. 😀Ona je to sice pravda, ale nejde ani tak úplně o jednu pevně stanovenou “definici” jako spíš o tu samotnou podstatu. Díky metadatům organizace chápe svá data, své systémy i pracovní postupy, protože metadata popisují, vysvětlují a usnadňují vyhledání, použití a správu jakéhokoliv datového zdroje.

7 nejběžnějších promptů datového analytika a inženýra | Mňamka #550

7 nejběžnějších promptů datového analytika a inženýra | Mňamka #550

Datoví analytici a inženýři tráví spoustu času rutinními úkoly – od čištění dat až po ladění kódu. Umělá inteligence dnes dokáže část téhle práce výrazně urychlit. Klíčem je dobře napsaný prompt – zadání, kterým AI přesně řeknete, co má udělat. Podívejme se na 7 promptů, které se v praxi hodí nejčastěji.

BI + generativní AI = Analytika na steroidech | Mňamka #549

BI + generativní AI = Analytika na steroidech | Mňamka #549

Jak GPT a spol. mění roli analytiků? Konverzace s daty, automatické vizualizace i predikce. Ještě nedávno jsme o umělé inteligenci mluvili spíš jako o budoucnosti. Dnes je generativní AI všude, od psaní textů přes tvorbu obrázků až po generování kódu. A během posledních měsíců začala výrazně měnit i oblast business intelligence. Firmy po celém světě zjišťují, že generativní modely dokážou zjednodušit práci s daty a zároveň ji zpřístupnit lidem, kteří nejsou datoví analytici.