Data Maturity, neboli datová maturita | Mňamka #315

Data Maturity, neboli datová maturita. Co to je? Proč to je? K čemu nám to slouží? No … jednoduše podle toho poznáte v které fázi a jak daleko je firma v tom, jak pracuje s daty. Tohle téma by se dalo určitě rozepsat tak do takového detailu, že by vznikla diplomová práce, nicméně dneska se na to podíváme trochu v rychlosti ale věřím, že pár klíčových bodů si z toho odnesete!

Už je to pár let zpátky, co jsme společně vymysleli, jak se vlastně v čase vyvíjí to, jak firma s daty pracuje. Výsledkem byl náš “data maturity model”, který vidíte zde:

Někdy tomu říkáme “schodiště”, protože jdete krok za krokem. Na začátku Vám stačí Excel. Je to úplně v pohodě a normální. Dost malých firem si s Excelem vystačí, uřídí “to v excelu”. Jenomže nastane doba, kdy Vám Excel přestane stačit a začnete řešit jak to posunout dál. Jak celou práci s daty ve Vaší firmě pozvednout a mít z toho “větší value”. Tady většinou začnete řešit “kudy dál”, jak se do toho projektu pustit, vzít k tomu někoho? Najmout ho interně? Co je správné řešení? A co timing? Jsme na to už ready?

… otázky, samé otázky … nicméně …

Pokud se Vám “první projekt” povede nastane kýžený “wow efekt”, kdy zjistíte, že máte data denně a aktuální. Třeba jenom v jednom oddělení, jeden use case, ale i tak “wow! ono to funguje”. Poté nastane určitá fáze drobného vystřízlivění. Začnete řešit, jestli jsou data opravdu vždycky správně a pokrývají všechno co mají. Přidáváte další a další use cases a snažíte se, aby lidé ve firmě data používali a pracovali s nimi… někde tady nastává kritická fáze “data maturity”. Fáze, kdy se buduje důvěra uživatelů v data.

Tuhle fázi nejde přeskočit. Pokud to uděláte, nedopadne to dobře. Bude to fail. Tohle období může trvat klidně jeden nebo dva roky. Důvěru musíte budovat postupně. A navíc, jak říkal jeden náš kolega, (který si pak otevřel hospodu) - svíčkovou a důvěru ve výtahu neuvaříš! Takže musíte po schodech, je mi líto ;-)

Pokud se Vám povede to, že lidé mají důvěru v data / BI / analytiku, můžete si pogratulovat. Máte pravděpodobně pevné základy, na kterých můžete stavět další schůdky a pustit se postupně do prvních modelů a třeba někdy i “do toho ej-áj”.

No a pokud jste teprve na začátku, nezoufejte. Každý tam jednou byl. Začněte. Postupně. No a pokud jste přeskočili nějaký ze schodů a jedete modely, ale “nemáte uklizeno”, pak byste měli zpozornět…

Hodně štěstí!

Máte k článku nějaké otázky nebo připomínky? Klidně mi napište, rád to s Vámi proberu :-)

Jirka Tobolka
datový detektiv
LinkedIn

Jak přistupovat k user managementu v datové analytice? | Mňamka #373

Jak přistupovat k user managementu v datové analytice? | Mňamka #373

Ne každý ve firmě by měl mít přístup úplně ke všem datům. A to ani tam, kde naplno vládne datová demokratizace. Základem dobré bezpečnosti je totiž tzv. princip nejnižších privilegií – nedávejte uživatelům přístup tam, kam ho nepotřebují. Stejně tak je ale potřeba pro klíčové procesy nastavit odpovídající kontrolní mechanismy, které povedou k minimalizaci bezpečnostních rizik. Co dalšího ještě můžete udělat? Verča pro vás popsala 5 důležitých bodů, kterých se společně s našimi klienty při přidělování uživatelských přístupů a práv snažíme držet.

Je to mezera, není to mezera? | Mňamka #370

Je to mezera, není to mezera? | Mňamka #370

O významu čištění dat toho bylo napsáno již poměrně hodně. Zjednodušeně by se to dalo shrnout takto – pokud si neuděláte úklid už na vstupu, budete mít neskutečný bordel i na výstupu. Dnes se proto podíváme, jak ve si Snowflake SQL vyčistit finanční čísla z Google Sheets. Petr vám postupně ukáže, jak by měl vypadat čistící skript pro data různých formátů. A narazil při tom i na jeden opravdu záludný oříšek. Není totiž mezera jako mezera. O tom už ale více v dnešní mňamce!

Period Over Period v Tableau | Mňamka #367

Period Over Period v Tableau | Mňamka #367

Při práci s daty ve vizualizačních nástrojích si velmi často potřebujete porovnat jednotlivá časová období. Zajímají vás např. prodeje tento vs. předchozí rok. V Tableau máte hned několik možností, jak takové period over period srovnání provést. Kterou z nich ale zvolit? Tomáš pro vás sepsal mňamku, ve které vás postupně provede výhodami a nevýhodami standardního řešení v podobě Quick Table Calculation, použití LOOKUP funkce, výpočetně náročnějšího data blendingu a variabilního custom filteru s předdefinovaným obdobím.