V čem nám data pomůžou u logistiky? | Mňamka #306
Logistika v datech
Firmy zabývající se logistikou produkují ohromné množství dat, které jde velmi dobře zhodnotit. Jedná se například o data z terénu - z provozu a z konkrétních aut, o dodavatelích, zákaznících nebo řidičích. Škála je široká. Detailní data ve velkém množství jsou hotový poklad a pokud o něm klient neví, rozhodně bychom jej o tom měli umět přesvědčit. Poslední věta se netýká jen logistiky, ale hodnoty dat obecně.
V každé firmě, která provozuje alespoň pár aut k logistickým účelům, hledají odpovědi na otázky, které jim pomůžou zlevnit, zrychlit a celkově zefektivnit vozový park, a tím snížit náklady. Mezi nejčastější otázky patří:
Jak jsou auta využita právě teď? Jakou zanechávají uhlíkovou stopu například za odvezenou zakázku? Jaká trasa bude pro konkrétní typ vozidla a zakázky nejlepší? Jak optimalizovat najeté kilometry? Kdo z firmy řídí bezpečně, a přitom efektivně? Kdo nejčastěji překračuje rychlost? Jaké vozidlo je často v servisu, jak dlouho a proč? Mají řidiči přehled o tom, jestli stíhají naplánovanou trasu a jak plní časový plán za určité období? Je zpoždění častěji zaviněno řidičem nebo druhou stranou? A co nehody?
U některých zákazníků se naši datoví detektivové k datům z logistiky dostanou a právě na tyto a podobné otázky hledají odpověď. Pojďme se zaměřit na nejčastější příklady.

Počet objednávek na trase
Zdánlivě komplikovaný pohled na vozidla (A, B, C,...) a trasy (1, 2, 3) v jednotlivých oblastech (Velká/Malá Lhota) pro konkrétní den, může být skvělým pomocníkem pro plánování a optimalizaci počtu objednávek na trase.
Velká Lhota má vyšší koncentraci obyvatel než Malá Lhota, lépe proto naplní kapacity trasy a rozvoz se více vyplatí. Pokud ale objednávek bude příliš, nemusí je řidič stihnout rozvézt, a hrozí nespokojení zákazníci. Naopak spodní hraniční hodnota, kdy se ještě vyplatí na trasu vyjet, je v tomto případě devět zakázek. Jak jde vidět, je logicky častěji dosažena v málo osídlené oblasti.

Utilizace v jednotlivých časových slotech
Heatmapa názorně zobrazuje využití vozidel, která jsou aktuálně k dispozici a jsou schopna okamžitě vyrazit na trasu. Samozřejmě musíme v tomto pohledu brát na zřetel, ideálně odfiltrovat, vozidla v servisu nebo používaná managementem.

Heatmapa s geografickým aspektem

Scoring řidičů
Každý řidič v průběhu jízdy sbírá hodnocení. Například o stylu jízdy, rychlosti a jejím překročení, stylu brždění a zatáčení. Společně s počtem zaviněných nehod a zpožděním si management udělá přesný obrázek, který řidič je nespolehlivý nebo naopak, kdo si zaslouží odměnu za příkladnou jízdu.
Data v logistice jsou díky jejich objemu velmi dobře využitelná. Byla by škoda nechopit se příležitosti. Co myslíte? Chtěli byste si o tomto tématu přečíst víc? Máme taky případovou studii, kterou najdete zde.
Zapomněla jsem na něco? Chcete se na něco zeptat? Napište mi.
Eva
Základní pojmy v datovém modelování | Mňamka #457
Co je to datový model? Jaký je rozdíl mezi konceptuálním a logickým modelem? A k čemu slouží proces tzv. normalizace? Bez datového modelování se dnes v BI obejdete už jen stěží, Kuba si o něm proto připravil krátkou minisérii, ve které si vše probereme od úplných základů. V prvním díle se seznámíme s nejdůležitějšími pojmy, které byste v této souvislosti měli znát, a na jednoduchém příkladu z oblasti sales si ukážeme, jak takový datový model vlastně vypadá. Tak pojďme na to!
MAQL II. - MAQL Reuse factů & Nesting metrik | Mňamka #454
Proč se vyplatí recyklovat metriky v MAQL? Máme tady pokračování naší krátké minisérie o dotazovacím jazyku MAQL od Péti. V minulém díle jsme si osvětlili základní rozdíl mezi SQL a MAQL a dnes se zaměříme na výhody metrik vytvořených pomocí MAQL a jejich recyklaci. Funguje to přitom podobně jako v případě klasické recyklace surovin. Pokud ji dělat nebudete, ušetříte si možná půl minutky práce, v budoucnu se vám to ale může velmi nepříjemně vrátit. Tak se na to pojďte podívat!
Šaty dělají kód aneb Proč je někdy lepší kebab než velbloud | Mňamka #441
I špatný standard může být lepší než žádný standard. Bez toho totiž ve vašem kódu velmi snadno zavládne chaos. V praxi se např. často stává, že lidé halabala kombinují různé druhy uvozovek, míchají malá a velká písmena v pojmenování proměnných nebo se pro jistotu vůbec žádných jmenných konvencí nedrží. Ostatně, Tomáš už se o tom mnohokrát přesvědčil na vlastní pěst. Sepsal pro vás proto mňamku, ve které si připomeneme, proč byste přece jen nějaký standard při psaní kódu mít měli!