Když se bere kanón na mouchu | Mňamka #52
Štěstí přeje připraveným
Ještě si živě pamatuju, když všechny moje projekty v Pythonu začínaly následujícími řádkami:
Přišlo mi to neprůstřelný. Nemůže mi přece chybět žádný modul, když je tam mám všechny. Četné nadávky linteru jsem ignoroval s myšlenkou: Já přece vím, co používám. Na první pohled je z importů zřejmé, že se jednalo o aplikaci, která pracovala se souborovým systémem, konkrétně pak s daty ve formátech JSON a CSV. Navíc docela nízkoúrovňově přistupovala k síti, s daty dělala nějakou tu dejta sájenc a byla to… hra?
Moje teorie byla taková, že když během kódění zjistím, že něco potřebuju, už to prostě rovnou budu mít. Štěstí přeje připraveným, ne?
Na zkoušku jsem vytvořil venv a nahrál do něj pomocí pip výše zmíněné balíčky. Prázdný venv má u mě kolem 7 MB, po nainstalování balíčků to bylo 150 MB. Samotný pandas má po instalaci všech závislostí (jako je třeba numpy) 113 MB. Dneska nikoho megabajt sem nebo megabajt tam úplně netrápí; v době, kdy váš repozitář může existovat v nesčetně kopiích napříč datovými centry a CDN po celém světě, a nikdo jeho 113 MB pandasu a jeden prázdný soubor s názvem hello-world.py nezaznamená, se to může zdát jako zbytečná buzerace, ale já když vidím ve skriptu na převedení TSV do CSV na začátku import pandas as pd, většinou se zhluboka nadechnu a začnu dělat problémy.
Orat se dá lecčím
Když zjistíte, že se vaším nosem dá tak trochu orat v zemi, stejně si radši na pole pořídíte třeba rádlo. A stejně je to s pandasem. Ono se to dá použít na otevření CSV. Ale ono to k tomu není primárně určené. pandas je jako švýcarák, a setsakramentsky dobrej švýcarák, ale víno se prostě většinou otevírá líp vývrtkou.
Může to vypadat, že jsem si zasedl na pandas; já opravdu vím, že je to skvělý balík modulů. Ale z mé zkušenosti se občas používá moc. Na srazu dejta sájentistů si musí pandas připadat trochu jako jediná žena na gang bangu.
Každý sklízí, co zasel
V Bizztreat jsem se naučil jedno strašně pěkný pravidlo - používej správný nástroj na požadovanou činnost.
O hodinu později koukám, co se hergot děje, že se mi ten obraz nechce a nechce sestavit. Nahlédnu do Dockerfile a představuji si, že takhle nějak vypadaly myšlenky autora:
- Tom říkal, ať ty obrazy děláme malý, postavím to na Alpine Linux.
- Moje appka používá pandas, tak teda pip install pandas.
- Ahá, ono to na Alpine nejde, tak já tam přidám závislosti pro sestavování C knihoven pro Python.
- pip install pandas
- Ty jo, trvá to docela dlouho, ale sestavilo se to.
- Hotovka libovka.
A na co appka ten pandas potřebuje?
Zjišťuje záhlaví céesvéčka.
Až se ucho utrhlo
Abych nebyl jenom za nerváka, co nadává na pandas, takhle prosím se dá docela snadno otevřít céescvéčko bez něj:
Tom
Jak se pracuje s Microsoft Fabric? | Mňamka #531
Microsoft Fabric slibuje revoluci ve zpracování dat ve firmách tím, že zefektivňuje správu dat a umožňuje připravovat, analyzovat a vizualizovat data bez nutnosti používat více oddělených systémů. Teorie zní skvěle, ale jaká je realita, když se rozhodnete tento nový "švýcarský nůž" pro práci s daty implementovat a používat? Podívejme se na to, jak se s Microsoft Fabric pracuje, s jakými výzvami se můžete setkat a jak rychle se stanete odborníkem na tuto platformu.
Co příchod Microsoft Fabric znamená pro Power BI? | Mňamka #530
Power BI stále zůstává vlajkovou lodí, ať v prostředí Mircosoft Fabric či v běžné aplikaci. Jako vizualizační nástroj dat má Power BI nezastupitelnou roli. Pouze v prostředí Microsoft Fabric je nabízen jako SAAS produkt. Jaké jsou první dojmy z nového prostředí? Kde můžete vnímat rozdíly a proč nemít obavy z přechodu na novou platformu.
Vejde se váš dashboard na jednu stránku a proč by vlastně měl? | Mňamka #529
Pokud pracujete s daty, rozhodně už jste se setkali s pojmem „dashboard“. Ať už jde o sledování prodejů, výkonnosti týmu nebo jiných KPIs, dashboardy se staly nezbytným nástrojem pro každodenní rozhodování. Ale položili jste si někdy otázku, zda by se váš dashboard vešel na jednu stránku? A proč byste se na něco takového měli vůbec ptát?