Když se bere kanón na mouchu | Mňamka #52

Štěstí přeje připraveným

Ještě si živě pamatuju, když všechny moje projekty v Pythonu začínaly následujícími řádkami:

Přišlo mi to neprůstřelný. Nemůže mi přece chybět žádný modul, když je tam mám všechny. Četné nadávky linteru jsem ignoroval s myšlenkou: Já přece vím, co používám. Na první pohled je z importů zřejmé, že se jednalo o aplikaci, která pracovala se souborovým systémem, konkrétně pak s daty ve formátech JSON a CSV. Navíc docela nízkoúrovňově přistupovala k síti, s daty dělala nějakou tu dejta sájenc a byla to… hra?

Moje teorie byla taková, že když během kódění zjistím, že něco potřebuju, už to prostě rovnou budu mít. Štěstí přeje připraveným, ne?

Na zkoušku jsem vytvořil venv a nahrál do něj pomocí pip výše zmíněné balíčky. Prázdný venv má u mě kolem 7 MB, po nainstalování balíčků to bylo 150 MB. Samotný pandas má po instalaci všech závislostí (jako je třeba numpy) 113 MB. Dneska nikoho megabajt sem nebo megabajt tam úplně netrápí; v době, kdy váš repozitář může existovat v nesčetně kopiích napříč datovými centry a CDN po celém světě, a nikdo jeho 113 MB pandasu a jeden prázdný soubor s názvem hello-world.py nezaznamená, se to může zdát jako zbytečná buzerace, ale já když vidím ve skriptu na převedení TSV do CSV na začátku import pandas as pd, většinou se zhluboka nadechnu a začnu dělat problémy.

Orat se dá lecčím

Když zjistíte, že se vaším nosem dá tak trochu orat v zemi, stejně si radši na pole pořídíte třeba rádlo. A stejně je to s pandasem. Ono se to dá použít na otevření CSV. Ale ono to k tomu není primárně určené. pandas je jako švýcarák, a setsakramentsky dobrej švýcarák, ale víno se prostě většinou otevírá líp vývrtkou.

Může to vypadat, že jsem si zasedl na pandas; já opravdu vím, že je to skvělý balík modulů. Ale z mé zkušenosti se občas používá moc. Na srazu dejta sájentistů si musí pandas připadat trochu jako jediná žena na gang bangu.

Každý sklízí, co zasel

V Bizztreat jsem se naučil jedno strašně pěkný pravidlo - používej správný nástroj na požadovanou činnost.

O hodinu později koukám, co se hergot děje, že se mi ten obraz nechce a nechce sestavit. Nahlédnu do Dockerfile a představuji si, že takhle nějak vypadaly myšlenky autora:

  • Tom říkal, ať ty obrazy děláme malý, postavím to na Alpine Linux.
  • Moje appka používá pandas, tak teda pip install pandas.
  • Ahá, ono to na Alpine nejde, tak já tam přidám závislosti pro sestavování C knihoven pro Python.
  • pip install pandas
  • Ty jo, trvá to docela dlouho, ale sestavilo se to.
  • Hotovka libovka.

A na co appka ten pandas potřebuje?

Zjišťuje záhlaví céesvéčka.

Až se ucho utrhlo

Abych nebyl jenom za nerváka, co nadává na pandas, takhle prosím se dá docela snadno otevřít céescvéčko bez něj:

Tom

Máte k článku nějaké otázky nebo připomínky? Klidně mi napište, rád to s Vámi proberu :-)

Tomáš Votava
CTOmča - datový detektiv
LinkedIn

Jak ohodnotit lokalitu: Data vs. Pocity | Mňamka #523

Jak ohodnotit lokalitu: Data vs. Pocity | Mňamka #523

V dnešním dynamickém světě se může zdát, že rozhodování o tom, kde otevřít další pobočku, je náročné, a že v něm hraje roli až příliš mnoho faktorů. Často kladené dotazy, které dostáváme, se točí kolem hodnocení potenciálu konkrétních lokalit. V tomto článku vám ukážeme, jak Location Intelligence může poskytnout přesné odpovědi na vaše otázky a zajistit, že vaše rozhodnutí budou založena na datech a faktech, nikoli na pocitech a zdánlivé atraktivitě místa.

 Rychlý porovnání: dbt cloud vs dbt core | Mňamka #522

Rychlý porovnání: dbt cloud vs dbt core | Mňamka #522

Data Build Tool, běžně známý jako dbt, se stal klíčovým prvkem v moderním datovém ekosystému. Jako kompilátor analytického SQL pomáhá dbt profesionálům z oblasti datové analýzy přeměnit surová data v datovém skladu na použitelné poznatky. Tento článek poskytne srovnání dvou klíčových nabídek: dbt Core a dbt Cloud.

Jak správně představit svůj daty podložený příběh?| Mňamka #521

Jak správně představit svůj daty podložený příběh?| Mňamka #521

Jak dostat cenné poznatky z obrovského množství dat a  informací?  Co dělat poté, co jste provedli analýzu a identifikovali významný trend? Jak efektivně sdílet tyto poznatky s ostatními? Kdo je vaše cílové publikum? Dalším a možná nejdůležitějším krokem je vyprávění.