Jak přistupovat k user managementu v datové analytice? | Mňamka #373

Přidělování uživatelských přístupů a práv do databází, ETL platforem či do vizualizačních nástrojů by mělo být součástí obecné IT policy, která řeší user management. Čím více budou procesy odděleny a řízeny ručně, tím větší riziko hrozí. Níže jsme popsali pár důležitých bodů, kterých se společně s našimi klienty snažíme držet.

Zero trust IAM solutions

Úvahy nad tím, zdali je lepší Okta, Azure AD, CyberArk nebo nějaký další produkt v tomto segmentu IAM řešení, nechám IT security expertům. Všechny tyto produkty ale mají společné to, že skrze SSO, MFA redukují bezpečnostní rizika spojená s používáním pro aplikaci odděleného hesla.

Principle of Least Privilege

Princip nejnižších privilegií je základ. Nedávejte uživatelům přístup tam, kam ho nepotřebují. Ve firmách, kde se v rámci datové demokratizace a self-service BI, uděluje většině uživatelům přístup do určité datové sady, je třeba tuto datovou sadu modelovat s ohledem na tuto skutečnost.

Automatizace (de)provisioningu

Vždy by měla být snaha o automatizaci provisioningu i deprovisioningu uživatelů, která je řízena z jednoho centrálního bodu. Manuálnímu přidávání či odebírání uživatele do/z koncového systému by mělo pomalu ale jistě odzvonit.

Monitoring aktivity

Napojte se na telemetry data a metadata nejen databázových systémů a monitorujte neobvyklou aktivitu. Pro klíčové procesy navíc nastavte kontrolní mechanismy (například pro automatizovaný deprovisioning uživatele z vizualizačního nástroje řízeného z centrálního adresáře můžeme nastavit ještě kontrolu vůči HR systému, ve kterém je uvedeno datum odchodu zaměstnance z firmy).

Dále monitorujte a reportujte užívání reportů a dashboardů a optimalizujte tak nejen přehlednost a provozní náklady datové platformy, ale i bezpečnostní rizika.

User groups

Zařazujte uživatele do uživatelských skupin a přístup udělujte těmto skupinám, nikoliv konkrétním uživatelům. Využívejte také dalších možností s tím spojených - například nastavení row level security.

Zapomněla jsem na něco? Chcete se na něco zeptat? Napište mi. 

Verča

Veronika Špryslová
datový detektiv
LinkedIn

Síla dobře navržených dashboardů a KPI | Mňamka #535

Síla dobře navržených dashboardů a KPI | Mňamka #535

V dnešní době chce být každý "data-driven" – rozhodovat se na základě dat, a ne podle pocitů. Jedním z klíčových způsobů, jak toho dosáhnout, jsou správně nastavené KPI a přehledné dashboardy. Ty poskytují jasný přehled o výkonnosti a pomáhají firmám činit rozhodnutí, která opravdu stojí na datových základech, ne na odhadech.

Klíčové ukazatele výkonnosti (KPI): Jak je správně nastavit a efektivně vyhodnotit pomocí business intelligence | Mňamka #534

Klíčové ukazatele výkonnosti (KPI): Jak je správně nastavit a efektivně vyhodnotit pomocí business intelligence | Mňamka #534

Jak efektivně řídit růst a sledovat dosažení cílů? Jak klíčové ukazatele výkonnosti (KPI) pomáhají firmám zlepšovat výkon a naplňovat strategické záměry?V článku najdete příklady KPI pro oblasti jako finance, marketing, zákaznický servis, výroba, lidské zdroje a IT, včetně praktických příkladů jejich využití. Zjistěte, jak zavést a sledovat KPI, abyste získali lepší přehled o efektivitě klíčových procesů.

Datové sklady, jezera a lakehouse: Jak vybrat správnou architekturu pro správu dat? | Mňamka #533

Datové sklady, jezera a lakehouse: Jak vybrat správnou architekturu pro správu dat? | Mňamka #533

Svět správy dat prošel rychlým vývojem, který je poháněn rostoucí potřebou zpracovávat a analyzovat obrovské množství dat v reálném čase. Firmy, které chtějí porozumět svým datům, narazily na různé architektury – datové sklady, datová jezera a nyní i tzv. lakehouse – které nabízejí různé možnosti pro ukládání a správu dat. Tento článek se zabývá těmito třemi architekturami, porovnává jejich výhody a nevýhody a podrobněji se zaměřuje na lakehouse, nejnovější inovaci, která se snaží řešit problémy z dřívějších systémů.